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Abstrsd. The finite-sire scaling functions of the correlation lengths in the ZD king model 
in a magnetic field are calculated numerically. The asymptotic behaviour in the limit of 
large scaling variables is studied and can be used to estimate the panicle masses and 
coupling constants of the underlying effective field theory. Thc results are consistent with 
the conjectured minimal S-matrix obtained from the conformal bootstrap. 

In two dimensions, the principle of conformal invariance allows a detailed description 
of critical statistical systems. Results include the exact determination of the central 
charge, critical exponents and correlation functions for numerous physical systems [ 11. 

It is natural to ask whether conformal invariance at the critical point could be used 
to describe the system in the entire scaling region which is no longer scale-invariant 
but where the correlation lengths are still much larger than the interatomic.distances. 
Indeed, it was shown by Zamolodchikov [2] that if the critical point Hamiltonian is 
perturbed by one of the relevant scaling fields q l z ,  q2, or q,3  (where the indices are 
the usual Kac labels) the off-critical system may possess integrals of motion Q, of spin 
s, built from T ( z )  and its derivatives, where T ( z )  is the energy-momentum tensor. 
This implies that the S-matrix factorizes in terms of two-particle scattering amplitudes 
which must satisfy the Yang-Baxter equations, bootstrap requirements, unitarity and 
crossing symmetry. Solving these requirements then allows us to conjecture [2] an 
S-matrix which should describe the off-critical theory under consideration. In the 
example of the ZD Ising model in a magnetic field (to which we restrict ourselves in 
the sequel), the effective theory whose S-matrix one is going to construct turns out to 
contain eight stable massive particles with the mass spectrum [2] 

mJ m ,  = 2  cos T I S =  1.618 0339.. . 
m,/ m ,  = 2  cos ~ / 3 0 =  1.9890437.. . 
m4/ m ,  = 2m2 cos 7 ~ / 3 0 =  2.404 8671 . . . 
m,/m,=2m2cos2?r/1S=2.9562952 ... 
m,/m,=2m2cos ~/30=3.2183404 ... 
m7/ m ,  =4m2 cos ~ 1 5  cos 7 ~ 1 3 0  = 3.891 1568.. . 
m , / m ,  =4m2cos ~ 1 5  C O S ~ T /  15=4.783 3861.. . . 

t Permanent address. 
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This result is believed to indicate a relation to E,, since the values of s for which 
integrals of motion are known to exist coincide with the exponents of E, modulo 30, 
its Coexter number. Also the coset construction ( E 8 ) , @ ( E 8 ) , / ( E &  gives a central 
charge c = f .  The possibility of a relationship with the E, affine Toda theory has been 
discussed at length (see e.g. [3-5]) although it is now believed that, for example, the 
S-matrices of the ZD king model in a magnetic field and of the affine E8 Toda theory 
with real couplings are different [6].  

The predictions for the masses m,, m2, m3 were confirmed numerically [7-91 which 
adds confidence that the assumptions leading to ( 1 )  should be satisfied in physical 
systems. However, no direct numerical checks on the S-matrix, testing for example 
coupling constants, have yet been performed which do  not from the outset assume 
integrability (see also below). 

Similar mass predictions exist for many other conformal systems perturbed with 
(P,~, ‘p2, or qI3 (for mass ratios and ’minimal’ S-matrices see e.g. [5,10] and references 
therein) and were confirmed numerically in systems as different as the tricritical Ising 
model [ l l ,  12, 131, the three-states Potts model [14, 151, the Ashkin-Teller model [13] 
or the Yang-Lee edge singularity [15,16]. Further, numerical calculations on the mass 
spectrum of the tricritical Ising model [ 171 and the Ashkin-Teller model [ 181 perturbed 
with the order parameter ((PJ appear to reproduce the mass spectrum (1) below the 
continuum threshold, although n o  integrals of motion Q. with s # 1 are known. This 
latter observation is yet to be understood. In spite of these numerical confirmations, 
the S-matrices obtained are by n o  means uniquely determined. It is well known that 
the requirements mentioned above only fix the S-matrix up to so-called coD-factors 
[19]. The presence of these factors in the S-matrix does not modify the mass spectrum 
hut may change the coupling constants [S,  6, 10,191. It is therefore of interest to be 
able to distinguish at least numerically between different S-matrices with the same 
mass spectrum. 

In this letter, we report numerical calculations of the ZD king model in a magnetic 
field which improve on previous tests [7-91 on the mass spectrum. Further, we shall 
compare the asymptotic behaviour of the finite-size scaling functions with the predic- 
tions from S-matrix theory. Our results are fully consistent with the minimal S-matrix 
proposed by Zamolodchikov [2], that is, we do  not see evidence for the presence of 
coD-factors in this particular model. Our findings are also in agreement with analytical 
studies using the thermodynamic Bethe ansatz [IS,  201, but in contradistinction to 
these methods, we do  not have to make any assumptions on the integrability of the 
system. 

The following method of analysis will be used. Liischer [21] has shown how to 
relate mass shifts of a field theory in a finite volume to the scattering amplitude, 
studying theories with simple mass spectra, in particular theories where the one-particle 
states all have the same mass, This was confirmed numerically for the 4D king model 
[22] and for the ZD O(3)  nonlinear sigma model [23]. Klassen and Melzer 1241 have 
generalized the results of [21] t o  the case of n massive particles which may have 
different masses. We merely quote their fairly general results to the extent needed here 
and refer to their paper [24] for further details and a precise statement of the technical 
assumptions to be made. 

For simplicity, we only consider two-dimensional systems in a slab of finite length 
L. Let a = 1,. . . , n denote the n stable particles and let O <  m, < m2<. . . < m. be their 
masses. Then the mass shift Am.(L) = ma( L )  - m. is for states with mass m. < Zm, [241 
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( 2 )  Am,(L)/ m, = M:”+ Mb” + O(exp( -U&)) 

m M‘:’=--TJ 1 
dOexp(-coshembL)mbcoshe 

257 (4) 

where fiobr = mbm,m;’ sin U;,  I& is defined by m i =  m:+ m:+2mbm, cos U;? and 

A t b , =  -Si(mhm, sin uL)* Res,=;.;, Sh,(e) (5)  
where Sab( 0 )  is the two-particle S-matrix describing the scattering process ab+ ab and 
0 is the rapidity variable. The prime in (4) indicates that one should only sum over 
terms which are larger than the error term O(exp(-uJ)). The exact size of the error 

. coeficient wiii be discussed in (241. ua is never bigger (and occasionally a bit smaller) 
than 2fiL,,,. Note that these relations were derived without assuming any particular 
form of the Lagrangian of the theory considered. Knowing the S-matrix, one can derive 
numerical values for fi.br and Aabc. In table 1, we list the contributions to MY’ which 
correspond to simple poles of the minimal S-matrix (that is, without cm-factors) first 
conjectured by Zamolodchikov [2 ,5 ,24] .  The values of table 1 with fiab,.<2pa,, are 
those we are going to use to calculate M Y ’  and which will be compared to our numerical 
results below. 

A convenient technique to accurately calculate the scaling functions of the masses 
A; or inverse correlations length 5;’ consists of diagonalizing the transfer matrix on 
finite lattices. Computationally, i t  is advantageous to consider the extreme anisotropic 
limit where the transfer matrix reduces to the exponential of the quantum Hamiltonian 
(for a review and a discussion of the numerical techniques see [25])  

.. 
H = - 1 (tu’( n) + U x (  n)u”( n + I ) +  huT“(n) )  (6)  

“ = I  

where the U are the Pauli matrices and periodic boundary conditions are used. N is 
the number of sites, t is related to the temperature and h is related to the magnetic 

Table I .  Numerical values for peh, and pUhr = A:h,/(8mtp.,hc) as obtained from the simple 
poles of the minimal E ,  S-matrix corresponding to the 20 king model in a magnetic field. 

obc *“hi P d .  

GI 111 0.866 025 x m, 1.046 154 x IO’ 
122 1.538 842 x m, 1.463 532X104 
I44 2.352315xm, 1.021 638 x 10’ 

G* 211 0.587 785 x m,  1.205 778 X IO‘ 
212 0.951 057 x m, 9.045 125 x 10’ 
221 0.951 057xm,  9.045 125 X IO’ 
222 1.401 259x m, 3.583 739 X IO6 
233 1.817082xm, 3.658 775 x 10’ 

312 0.809017xml 1.853 066 X IO‘ 
321 0.809017xm, 1.853 066 X I O 4  
323 1.478 148xm, 2.976315XlO’ 
332 1.478 148x m, 2.976315XIO‘ 

G, 311 0.104 528x m ,  1.130876XIO~’ 
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field. The critical point corresponds to 1 = 1, h = 0. The masses kiri are obtained from 
the eigenvalues E; of H as hi = 51' = E! - Eo where Eo is the ground-state energy. For 
the discrete spectrum, the masses ki are related to the stable particle masses m.. We 
are interested in the limit h + 0, N -t m such that the scaling variable 

is kept fixed. We then expect a scaling form of the masses 

61; = h8"'G;(p). (8) 

The limit p + m then corresponds to the mass predictions in (1). 
We still have to relate L with p. To do so, we recall that conformal invariance at 

the critical point uniquely fixes the normalization of H [26]. For the specific form of 
H in (6), we must renormalize H + c - ' H  with 5 = 2. Then we can write 

The mass shifts are then calculated from (with i = a = 1-3) 

G(P) = (G,(m) - G(p))/Gdm) = -Amo(L)/mdm). (10) 

We first have to determine the G,(m). This involves the double extrapolation of 
taking first the finite-size scaling limit with p fixed and then let p + 00. Computationally, 
it is preferable to replace this double limit by first letting N + m with h fixed and only 
afterwards extrapolate for h + 0 [7,17]. We use lattices with up to N = 21 sites. In 
table 2, we give our estimates of the G,(m) as a function of h along with the result of 
the extrapolation for h + O .  The extrapolations were done with the BST extrapolation 
algorithm [27,28]. From these limits, we find for the mass ratios 

m2/m, = 1.6181 ( 5 )  m,/m,=1.994(5) (11) 

which improves upon earlier estimates [7,8] and should be compared with the ratios 
1.618 03.. . and 1.989 0 4 . .  . as taken from (1). Our estimates agree well with the 
prediction. 

Table 2. Estimates for the scaling functions G,(m) as a function of the magnetic field h 
and their limits for h-0. The numbers in brackets give the estimated uncertainty in the 
last given digit(s). Far G,, the given numben are exact in all given digits if h 20 .30 .  

h Gdm) GLm) G,im) 

0.05 
0.07 
0.10 
0.15 
0.20 
0.25 
0.30 
0.40 
0.45 
0.50 
0.60 

h - 0  

5.408 (4)  
5.408 8 (3)  
5.405 35 ( 5 )  
5.400 19 ( I )  
5.395 109 2 (2)  
5.390 141 I ( 2 )  
5.385312 19 
5.376 15994 
5.371 875 85 
5.367 810 72 
5.360 404 91 

5 .4156(3 )  

- 
8.75 (5)  
8.729 (6)  
8.705 3 (4) 
8.685 02 (4) 
8.664 267 (4) 
8.643 323 (2)  
8.601 271 09 (8)  
8 .58043362(4)  
8.559934 18 (6)  
8.520 708 56 (2) 

8.763 (4)  

- 
- 
- 
10.669(3) 
10.636 (2) 
10.6022(10) 
10.529 8 (8)  
10.493 37 ( 5 )  
10.456 965 (30) 
10.388331 (7)  

10.80(5) 
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We now turn to the SG,(p). In comparison with the asymptotic expression Mb“ 
of (3), p must be large enough so that the other correction terms are still negligible. 
On the other hand, if p becomes too large, the errors in our determination of G , ( p )  
and G,(m) become larger than the value of SG,(p) itself. I f  p is finite, the finite-size 
corrections terms can be predicted from conformal perturbation theory [8,29]; one has 

S# = h””S ( G , ( ~ L ) +  N - * R , ( ~ ) +  o w 4 ) ) .  (12) 

The regular structure of the correction terms hints at a very smooth convergence of 
the finite-size data. This is indeed found and the form (12) is nicely reproduced by 
our numerical data. In fact, the main limitation to our ability of accurately calculating 
SG,(p) comes from the uncertainty of the G,(oJ) because of the double limit involved 
in their determination. Typically, the values of G, ( p )  are known one digit more precisely 
than G,(m). To increase precision in our calculation of the SG,(p), we have therefore 
decided to calculate G,(oo) and G,(co) by using the value of G,(m) from table 2 and 
( I ) ,  rather than taking their values from table 2. 

In figure 1, we display our data for the SG,(p) as a function of p*’”. First, we 
observe that for larger values of p, In SG,(p) is a linear function of p““. as expected 
if only one term in (3) is contributing. This may also be considered as a test of the 
scaling L-p8/‘s,  Secondly, we compare with the full curves giving the function MY’. 
These functions were calculated from (3) by taking into account only those terms from 
table 1 where pahC<2paII  (see [24]). Inclusion of the other terms as well as M Y ’  
would probably be inconsistent, since the contribution of the next order still neglected 
in (2) could be of the same order of magnitude. We note that the numerical values of 
SG, and 6G2 follow the predictions over two orders of magnitude. For SG,, we have 
for our largest values of p just reached the asymptotic regime described by (2). 

The observed agreement with M Y ’  calculated as described gives, at least for this 
particular model, an a posteriori justification for neglecting M y ’ ,  which is at most of 
order O(exp(-m,L)), while at least the lowest puhr are smaller than m, (see table I ) .  
We can thus conclude that our numerical data are consistent with the conjectured 

Figure 1. Comparison of the reduced mass shifts S G 6 ( p )  with the asymptotic expressions 
MY’ of (3)  (full curves). The My’werecalculated by taking into account only those terms 
from table 1 with < 2fid,, . G, corresponds to A, G, to 0 and G, to A. 
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minimal E, S-matrix. We have also tried to fit the numerical data to the form of (3) 
but with the AObc as free parameters, while the pabC were still taken from table 1. This 
reproduces the expected values of the ,io,, (with a = 1,2) to within a few per cent. 

Our numerical calculations are in agreement with analytical studies. From the 
thermodynamic Bethe ansatz [15], it is possible to calculate the central charge c of 
the critical, conformal invariant theory if the S-matrix of the off-critical theory is given. 
This method requires the integrability of the system considered. All practical calcula- 
tions carried out until now have further assumed that the S-matrix is diagonal, Applying 
this technique to the minimal E8 S-matrix, one finds indeed c = f  [6 ] ,  corresponding 
to the king model. Further confirmation ofthe minimal S-matrix comes from comparing 
the thermodynamic Bethe ansatz with conformal perturbation theory for the ground 
state energy [15,20], at least for systems which can be assumed to be integrable. Very 
recently, a truncated fermionic space approach was proposed and used to estimate 
mass ratios and scattering amplitudes in the 20 king model [30]. All these results also 
imply the absence of cDD-factors in the systems studied. 

In summary, we have given numerical evidence that both the masses and the 
coupling constants estimated from the finite-size scaling functions of the two- 
dimensional king model in a magnetic field are fully consistent with the conjectured 
minimal S-matrix. In contrast to other techniques, the methods applied here make no 
assumption on the integrability of the system and can thus be applied to a far larger 
set of models. Further work along these lines is in progress. 

It is a pleasure to thank T R Klassen and E Melzer for communicating the contents 
of [24] before publication and for useful remarks. I thank the Institute of Theoretical 
Physics at Santa Barbara for hospitality. This research was supported by the Fonds 
Marc Birkigt, the Swiss National Science Foundation and the US National Science 
Foundation under Grant No PHY89-04035, supplemented by funds from NASA. 
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